Operators and functions¶
Arithmetic operators¶
xtensor provides overloads of traditional arithmetic operators for
xexpression
objects:
- unary
operator+
- unary
operator-
operator+
operator-
operator*
operator/
operator%
All these operators are element-wise operators and apply the lazy broadcasting rules explained in a previous section.
#incude "xtensor/xarray.hpp"
xt::xarray<int> a = {{1, 2}, {3, 4}};
xt::xarray<int> b = {1, 2};
xt::xarray<int> res = 2 * (a + b);
// => res = {{4, 8}, {8, 12}}
Logical operators¶
xtensor also provides overloads of the logical operators:
operator!
operator||
operator&&
Like arithmetic operators, these logical operators are element-wise operators and apply the lazy broadcasting rules. In addition to these element-wise logical operators, xtensor provides two reducing boolean functions:
any(E&& e)
returnstrue
if any ofe
elements is truthy,false
otherwise.all(E&& e)
returnstrue
if all alements ofe
are truthy,false
otherwise.
and an element-wise ternary function (similar to the : ?
ternary operator):
where(E&& b, E1&& e&, E2&& e2)
returns anxexpression
whose elements are those ofe1
when corresponding elements ofb
are thruthy, and those ofe2
otherwise.
#include "xtensor/xarray.hpp"
xt::xarray<bool> b = { false, true, true, false };
xt::xarray<int> a1 = { 1, 2, 3, 4 };
xt::xarray<int> a2 = { 11, 12, 13, 14 };
xt::xarray<int> res = xt::where(b, a1, a2);
// => res = { 11, 2, 3, 14 }
Unlike in numpy.where
, xt::where
takes full advantage of the lazyness
of xtensor.
Comparison operators¶
xtensor provides overloads of the inequality operators:
operator<
operator<=
operator>
operator>=
These overloads of inequality operators are quite different from the standard
C++ inequality operators: they are element-wise operators returning boolean
xexpression
:
#include "xtensor/xarray.hpp"
xt::xarray<int> a1 = { 1, 12, 3, 14 };
xt::xarray<int> a2 = { 11, 2, 13, 4 };
xt::xarray<bool> comp = a1 < a2;
// => comp = { true, false, true, false }
However, equality operators are similar to the traditional ones in C++:
operator==(const E1& e1, const E2& e2)
returnstrue
ife1
ande2
hold the same elements.operator!=(const E1& e1, const E2& e2)
returnstrue
ife1
ande2
don’t hold the same elements.
Element-wise equality comparison can be achieved through the xt::equal
function.
#include "xtensor/xarray.hpp"
xt::xarray<int> a1 = { 1, 2, 3, 4};
xt::xarray<int> a2 = { 11, 12, 3, 4};
bool res = (a1 == a2);
// => res = false
xt::xarray<bool> re = xt::equal(a1, a2);
// => re = { false, false, true, true }
Bitwise operators¶
xtensor also contains the following bitwise operators:
- Bitwise and:
operator&
- Bitwise or:
operator|
- Bitwise xor:
operator^
- Bitwise not:
operator~
- Bitwise left/right shift:
left_shift
,right_shift
Mathematical functions¶
xtensor provides overloads for many of the standard mathematical functions:
- basic functions:
abs
,remainder
,fma
, … - exponential functions:
exp
,expm1
,log
,log1p
, … - power functions:
pow
,sqrt
,cbrt
, … - trigonometric functions:
sin
,cos
,tan
, … - hyperbolic functions:
sinh
,cosh
,tanh
, … - Error and gamma functions:
erf
,erfc
,tgamma
,lgamma
, …. - Nearest integer floating point operations:
ceil
,floor
,trunc
, …
See the API reference for a comprehensive list of available functions. Like operators, the mathematical functions are element-wise functions and apply the lazy broadcasting rules.
Casting¶
xtensor will implicitly promote and/or cast tensor expression elements as
needed, which suffices for most use-cases. But explicit casting can be
performed via cast
, which performs an element-wise static_cast
.
#include "xtensor/xarray.hpp"
xt::xarray<int> a = { 3, 5, 7 };
auto res = a / 2;
// => res = { 1, 2, 3 }
auto res2 = xt::cast<double>(a) / 2;
// => res2 = { 1.5, 2.5, 3.5 }
Reducers¶
xtensor provides reducers, that is, means for accumulating values of tensor
expressions over prescribed axes. The return value of a reducer is an
xexpression
with the same shape as the input expression, with the specified
axes removed.
#include "xtensor/xarray.hpp"
#include "xtensor/xmath.hpp"
xt::xarray<double> a = xt::ones<double>({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::sum(a, {1, 3});
// => res.shape() = { 3, 4, 5 };
// => res(0, 0, 0) = 12
You can also call the reduce
generator with your own reducing function:
#include "xtensor/xarray.hpp"
#include "xtensor/xreducer.hpp"
xt::xarray<double> arr = some_init_function({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::reduce([](double a, double b) { return a*a + b*b; },
arr,
{1, 3});
Accumulators¶
Similar to reducers, xtensor provides accumulators which are used to
implement cumulative functions such as cumsum
or cumprod
. Accumulators
can currently only work on a single axis. Additionally, the accumulators are
not lazy and do not return an xexpression, but rather an evaluated xarray
or xtensor
.
#include "xtensor/xarray.hpp"
#include "xtensor/xmath.hpp"
xt::xarray<double> a = xt::ones<double>({5, 8, 3});
xt::xarray<double> res = xt::cumsum(a, 1);
// => res.shape() = {5, 8, 3};
// => res(0, 0, 0) = 1
// => res(0, 7, 0) = 8
You can also call the accumumulate
generator with your own accumulating
function. For example, the implementation of cumsum is as follows:
#include "xtensor/xarray.hpp"
#include "xtensor/xaccumulator.hpp"
xt::xarray<double> arr = some_init_function({5, 5, 5});
xt::xarray<double> res = xt::accumulate([](double a, double b) { return a + b; },
arr,
1);
Evaluation strategy¶
Generally, xtensor implements a lazy execution model, but under certain circumstances, a greedy execution model with immediate execution can be favorable. For example, reusing (and recomputing) the same values of a reducer over and over again if you use them in a loop can cost a lot of CPU cycles. Additionally, greedy execution can benefit from SIMD acceleration over reduction axes and is faster when the entire result needs to be computed.
Therefore, xtensor allows to select an evaluation_strategy
. Currently, two
evaluation strategies are implemented: evaluation_strategy::immediate
and
evaluation_strategy::lazy
. When immediate
evaluation is selected, the
return value is not an xexpression, but an in-memory datastructure such as a
xarray or xtensor (depending on the input values).
Choosing an evaluation_strategy is straightforward. For reducers:
#include "xtensor/xarray.hpp"
#include "xtensor/xreducer.hpp"
xt::xarray<double> a = xt::ones<double>({3, 2, 4, 6, 5});
auto res = xt::sum(a, {1, 3}, xt::evaluation_strategy::immediate());
// or select the default:
// auto res = xt::sum(a, {1, 3}, xt::evaluation_strategy::lazy());
Note: for accumulators, only the immediate
evaluation strategy is currently
implemented.
Universal functions and vectorization¶
xtensor provides utilities to vectorize any scalar function (taking
multiple scalar arguments) into a function that will perform on
xexpression
s, applying the lazy broadcasting rules which we described in a
previous section. These functions are called xfunction
s. They are
xtensor’s counterpart to numpy’s universal functions.
Actually, all arithmetic and logical operators, inequality operator and
mathematical functions we described before are xfunction
s.
The following snippet shows how to vectorize a scalar function taking two arguments:
#include "xtensor/xarray.hpp"
#include "xtensor/xvectorize.hpp"
int f(int a, int b)
{
return a + 2 * b;
}
auto vecf = xt::vectorize(f);
xt::xarray<int> a = { 11, 12, 13 };
xt::xarray<int> b = { 1, 2, 3 };
xt::xarray<int> res = vecf(a, b);
// => res = { 13, 16, 19 }